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REPORT No. 323

FLOW AND FORCE EQUATIONS FOR A BODY REVOLVING IN A FLUID

IN FIVE PARTS
By A. F. Zagx

SUMMARY

This report, submitted to the National Advisory Committee for Aeronautics for publication, is
a slightly revised form of U. S. Navy Aerodynamical Laboratory Report No. 380, completed for the
Bureau of Aeronautics itn November, 1928. The diagrams and tables were prepared by Mr. F. A.
Louden; the measurements given in Tables 9 to 11 were made for this paper by Afr. R. H. Smith,
both members of the Aeronautics Staff. ' _

Part I gives a general method for finding the steady-flow velocity relative to a body in plane
curvilinear motion, whence the pressure is found by Bernoulli's energy principle. Integraiion of
the pressure supplies basic formulas for the zonal forces and moments on the revolring body.

Part II, applying this steady-flow method, finds the velocity and pressure at all points of the
Alow inside and outside an ellipsoid and some of ils limiting forms, and graphs those gquantities for
the latter forms. In some wuseful cases experimental pressures are plotied for comparison with
theoretical.

Part IIT finds the pressure, and thence the zonal force and moment, on hulls in plane curvi-

linear flight.
Part I'V derives general equations for the resultant fluid forces and moments on {risymmetrical

hodies moving through a perfect fluid, and in some cases compares the moment values with those '

found for bodies moving in air.

Part V furnishes ready formulas for potential coefficienis and inertia coefficients for an elltpsoid
and its limiting forms. Thence are derived tables giving numerical values of those coefficients for
a comprehensive range of shapes.
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FLOW AND FORCE EQUATIONS FOR A BODY REVOLVING IN A FLUID

PART I

INTRODUCTION

SteEADY-FLOW METHOD.—IN some few known cases one can compute the absolute particle
velocity ¢’ at any point (z, y, 2) of the flow caused by the rotation of a body, say with uniform
angular speed ©, in an infinite inviscid liquid otherwise still. Thence, since ¢’ is unsteady at
[z, ¥, 2), the instantaneous pressure there is found by Kelvin’s formula p,/p= —0¢/0t—¢'*/2, p,
being the supervacuo pressure there, and ¢ the velocity potential.

Otherwise superposing upon said body and flow field the reverse speed —Q, about the same
axis, gives the same relative velocity ¢ but which now is everywhere a steady space velocity.
In the body’s absence the circular fiow speed at the radial distance B would be Qo=—0R! If
the fixed body’s presence lowers_the speed at (z, ¥, 2) from g, to g, it obviously begets there the
superstream pressure

P_—P(QO 2)----.---.-;-7-—-—.-----_- ------ -_—7-?-"_:‘__-“(.1)-

or in dimensionless form, a being some fixed length in the body,

1p£2gz a2(1 q2/q02) ----------------------------- (11)’.

-l

The present text finds p by this steady-flow method only, and apphes it to streams a,bout, various
forms of the ellipsoid and its derivatives.
The superposed circular flow, go=—QR = —0y/OR, has the strea.m—functmn

which, for rotation about the z axis, plots as in F1gure 4. This flow has no velocity potential,
since OY/OR#0.

GenERAL Formuras For VELOCITY ‘COMPONENTS.~In plane flow,? as is known, & particle
st any point (@, ¥) of & line s drawn in the fluid has the tangential and normal velocity com-
ponents _ _

Lde_ ¥ L2 2y
as “on — n on as_-—"—-'—é—--—-——--.-—-'— @)

& This veloalty entalls the contrifagal pressure pempf Y2 at all distances, R= v 77 from the rotation axis of the circular stream, hero sssumed

to be constrained by a cosxial closed cylinder infinitely large. To the dynamfc premu'e Pctp may also be added any arbitrary static pressure
such as that due to welght of other Impressed force.

- % At any surface point of the body ¢ is the velocity of wash or slip, whether the body moves or not; lt isg ;-q".. the difference of the tanzentlal
space velocltlés of the fiuld and surface point. If the body is fixed ¢"i=0, g=g’c.

3 Plane flow, viz two-dimensional flow, literally means flow in a plane; the térm applies also to space ﬂow that is the same in all parallel planes.

412
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FLOW AND FORCE EQUATIONS FOR A BODY REVOLVING IN A FLUID 413

where 8s, én are elements along the line and its normal. As usual, ¢,, g, are reckoned positive
respectively along 33, én positive; e. g. Figure 2. The components along z, ¥ are

Qp_ 0y _Op oy
v=Sz oy 0=y~ Tor-—————-- )

In solid flow (3), (4) still hold for ¢, and further w=03¢/0z. In
general, ¢=u?+v*+ut=¢2+¢2. At any point of a surface drawn in the
fluid g, is taken in the plane of ¢ and ¢,. All these velocities are referred
to fixed space.

Surrace VeLociTY.—A fixed body in any stream, since g,=0, has
the surface flow velocity ¢=g¢,, which put in (1) determines the surface
pressure.

At any surface point of an immersed moving body ¢, is the same for
body and fluid, hence is known from solid kinematics. Thus, if the body
is any cylinder rotating as in Figure 1,

gx=—0R dR/ds=QR sin (0—8)=0Qh;=Q(mz—ly)_______ (5)

where the symbols are as defined in Figures 1, 2.
More generally, for any surface with velocities Q,, Q,, Q; about the
axes , ¥y, 2,

gx=(ny—m2)Q;+ (lz2—nx)Q,+ (mz—Tly)Q,_ __________ )

where [, m, n are the direction cosines of the surface normal, as in (13;).

9
Y

% 2,

Figure 1.—Component velocl
tles ¢a, g: of surface polnt of
any rigld cylinder having an-
gular speed 2 about any sxis
parallel to fits length. ga=
Qh1; que=Qht. M=R sin (@—
B)=—R dR/de=mz—ly, 1, m
being dlrection cosines of the
normal to the contour element
dsat (z,¥). Ifthebody rotates
in a fluld, ga=0¥/O2mdp/On,
At any surface point ¢« Is the
same for hody and Aunid; ¢:
different except at points of no
slippage

If at the same time the body has translation components, U, ¥V, W along z, , 2 (6) must be

y increased by {U+mV+n W, giving

@u=U(U+ 20, — y2) + m(V+aQ,—

side the body.

X=Spdy Y=/[pdr

x/f a a
Ry /

ZQ:) +n(W+ yﬂ,—zﬂ,) - (7)

But (5), (6), (7) espress ¢, only at the model’s surface.
Equations (1) to (7) obtain whether the fluid is inside or out-

ZoNarL Forces axp MoMENTs —For any cylinder spm.m.ng
about 2, as in Figure 1 or 5, surface integration of p gives, per
unit of z-wise length, the zonal* forces and moment, respectively,

Fiovee 2.—Geometric data for confocal WhHere p dy, p dr are the z, y components of the elementary
ellipses. =;¢' eas y=r c03 ﬁ‘;”'b’ sin - surface force p ds, and r is the radius vector of (z, 7). To derive
"'”‘“ fi g tan#=tan y=p tanf= N we note that p ds has components p r 48, p dr along and across
¢ X: hersin 6—@; ha=r cos ¢—5. 7. Having no moment, p r d8 can be ignored, leaving only p
fmaemg’ ¢, e=+1-F[c? beingeccen- dr with arm r. Thus, 2= fp d(r?), which varies as the area of

trilty of ab the graph of p versus r%

A surface of rotation about z, spinning about its 2 axis, has zonal forces

X=SSpdyd=

LA zone Is any part of the surface bounded by two parallel planes; in this text they ere assumed normat to z, and the zone has the bounding

plenes r=(, z=4xy; In Part ITT other planes are used; &, g. r=r1, T=g.
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If ds,, ds. are elements of its lines of meridian and latitude, as in Figure 3, the moment about
z of p ds, ds, is p r dr ds, in the plane w=0, and p r dr dse cos w=p r dr dz=dXN for any
meridian plane; hence the zonal moment is

2r

Y=/ Pdz Bty XY (10)

Since p is symmetrical about the z axis, Z=0=Y.=L= AM=N; viz, the assumed zone is

not urged along v, z or about z, ¥, 2. In general, X is not zero for such a zone, but is zero for

the whole model, - The zonal ¥, N are zero for steady

Y : rotation about z in a frictionless liquid, because p is

b symmetrical about_the x axis; but are not so in a viscid
2 fluid, nor for accelerated spin in a perfect fluid.

A4 For trisymmetrical surfaces we note also: If the

zones were formed by planes normal to z, zonal X

Al A Y " not zero; e. g., for a viscid fluid. Similarly for zones
with faces normal to y.

- in the pla.ney Olsf Pr dr This is zero for a fric-

o of zone, L
FiquREe 5 —Geomstrio data for prolate sphesold. z=a 003 In addltmn to bhe pressure forces and moments ]u%
% y=bsiny 05 w=r sinf cose; s=b sin v sin w=r 0 considered, due to rotation about z, a viscid fluid exerts
g sin o; R=+77F§), § n is positive outward; & &, £ fricti trical about th b t £
1., positive as indicated by srrows; emyembstny ~ SUrifce friction symme rical abou e z axrs, ut 1o
treated here.

For any surface S, clearly (9) still holds and (10) caﬁ be generahzed to the usual form -

N=JSpade—ydy)de_ e (104
GroMETRICAL ForMULAs.—Most of the surfaces treated in this text are members of the
confocal ellipsoid family _
x? 7 2 . 2 2 ’
pr el v Nl srapual Saby i v Ry SEEEEEEREEEEERER R (11)

whose semi axes are @’ = Va?+ A, etc. The following known properties are needed.
The distance from the center to the tangent plane at the point (z, y, 2) of a’d’c’ is

2 2 \—¢
ha= ( ,,+b'-‘{4+ 2,4) SR ¢ )}

The direction-cosines of the normasl to said plane are
1, m,n=, by M e 2(13)

4 The radius of the lat{tude cirele Is denoted by ze=ga.

T, Vi would be zero for motion about z; zonal NN in general _
7

By (10) the bendmg moment about the 2 ‘ordinate
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The partial derivatives of A are

O _othy g;=2mh, O gmhe  QMeghy (14)

More generally for any surface f(x, ¥, 2) =0, one knows

B AR RS ()2 p—

and the distance from the origin to the tangent plane at (&, ¥, 2) is
he=le+my+nz=rcos y__ .. _ .o _______ P, (12)

v being the angle between the radius vector r and the normal. ;

Covyextions.—In all the text z, ¥, z have the positive directions shown in Figure 3,
as also have thez, ¥, 2z com- y
ponents of velocity, accelera-
tion, force, inear momentum.
The angular components
about z, ¥, z of velocity, ac-
celeration, moment, momen-
tum are positive in the re-
spective directions ¥ to 2z, 2
to z, « to y. The positive
direction of a plane closed
contour & is that followed

/ \
by one going round it with -' /I
the inclosure on his left, as ////// /{ \\\\\\
in Figure 2; the positive
direction of the normal =
is from left to right across s;
and 8s, én determine the positive directions of the tangentlal and normsl flow veloc1t1es g
¢x; 8s previously stated. For s closed surface &n is positive outward and &g is positive
in the direction of one walking on the outer surface with n on his left.

The word ““displaced fluid,” used in treating the motion of a submerged body, usually
means fluid that would just replace the body if the latter were removed.

FIGURE 4—Streamlines for \6-% 9 Rt with Increments A ¥m.2, for fluid rotating with unifero
angular velocity Q=—1 ’
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FLOW AND FORCE EQUATIONS FOR A BODY REVOLVING IN A FLUID

PART I
VELOCITY AND PRESSURE

(A) BODIES IN SIMPLE ROTATION

Eirirric CyrinpER.—For an endless elliptic cylinder, of semiaxes a, b, ¢ (= «), rotating
about ¢ with angular speed Q. in an infinite inviscid liquid, otherwise still, one knows !

e=—m' Qay= —%m_fcﬂca’b’ sin 2y Y= —-;-m’cﬂca’b’ €OS 2% e oo (15)
¥
N . J/
e N
\\ 6\*9\66((\
\
\\ »e # )
N ; ) NG
AN AT b"*“:: - 7
k ~
N
.. « - \,
/ = \ \
. R \
/ // = «\\\\ )
| =S n'\““"n ‘\“."\:\“ : "‘“"4,"’:"/','1,",’,, :',:":'r':"m'n . \ \
! i 'u'i‘l'", TS Al 11 it n'x'm'ﬂ ; “
L a o 3G

F1eUREZ §.—Streamlines for endless elliptic oylinder rotating about Its long axis with uniform angular velooity @; shows &-—% me0a
1 gt=b

008 2 with increments A ¢ =2, Qm1, Fm' inside fluid, ¢ = —7x Z OF5 === Q (21—§7)
the geometric symbols being as in Figure 2. For any oufer confocal a’b’ the potential coefficient
has the constant-value .
=(a+b)* (@ —b)/2ab (@ + b ) - - oo (16)?

On the model’s surface a’ =a, b’ =b; m’ .= (a®*— b?)/2ab.

The equipotential lines on either surface ab or a’b’ are its intersections with the corre-
gponding family of hyperbolic eylinders ay= — o/m’ Q=const. Normal to the equipotentials
are the streamlines ¢ =const. Graphs for =0, 0.2, 0.4, etc., are shown in Figure 5 for a model
having a/b=4. They are instantaneous streamlines, and form with the model a constant
pattern in uniform rotation about ¢ in said infinite liquid.

At any outer confocal a’b’ the velocity components are, if xk=m’a'd'Q,,

q’,=%—f=—x coS 217% gn—a—"'/—x sm 2173 =—g tan 2y _ .. (17)

1 Proofs of (15, (23), (29), (40) are found In books; e. g., Lumb §§ 72 106. 110, 118, Bth ed., except that anb reverses the slgn ot @ ir .

- g o
* Equivelont to (16) Is m’,w (" ::«7?7:’: ; ‘,‘17. ¢, ¢ Deing the eccentrloities of ab, ', On ab this becomes m'smet/I<e. S0 (45)

for the six potentlal coefflolents ma, my, Mmc, Mm's, M"s, M’ In the value of ¢ for more general motion.
416 . . . . _ .
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where dn/ds=1/a’ +/1—e'® cos™y, as one easily finds. Alternative to (17) are
g':= —M’eﬂc%wy= —m’ Qg cos (6+6) ¢x=—¢:tan 2y _______._(17)

Thus for =0, 45°, 90° (17) and (17,) give ¢'//Q.= —m’.a’, o, m'B’. At the model’s surface,
where m’ .= (2~ b2){2ab, (17,) become '

2__A2
’ a

= =5 0r00s 0+F)  a=Qursin (=F)ooeeeeenns T
the latter being A,Q,, as in (5).

Where ¢’ =0, or cos y=1/+/2, viz, at the stream poles, clearly x=a’/+/2, ¥=0/+/2,
—yt=ate e o ____ (18)

a rectangular hyperbola. (18) is the instantaneous polar streamline, e. g., Figure 5, orthogonal
to all the confocal ellipses. Its asymptotes are y= +x; its vertices are at ¢= +ae/+/2; it cuts

each ellipse where z/y=a’/t’, viz, on the diagonals of the circumscribed rectangle. For an

endless thin plate of width 2 the poles are at y=0, x= + a/~/2.
Superposing —Q, on the body and fluid, and using (2), changes (15) to

=%(r’—m’¢a’b’ €0s 2o _ . _ e e (19)

Its graph, with A¢=0.2, gives the streamlines in Figure 6 for the flow 2,=—1 round a fixed
cylinder having a/6=4. About the point (0, 1.45) in Figure 6, is a whirl separated from the

outer flow by the streamline ¢=4.25. This line abuts on the model at the inflow points 4, ©;

spreads round it and emerges at the outflow points 0, 0.2 The streamlines for an endless thin
rectangle having b =0, e=1, are similar to those of Figure 6, but infinitely crowded at the edges.
The superposed particle velocity — Q. coniributes to (17,)

¢ =—Qrcos 0—B)=—hQ, ¢ =—0Qrsin (0—B)=—hQe . (20)

also ¢/, =¢'stan (¢f—B). Adding (17,) and (20) gives the components g:=¢'1+¢"'s, Gx=¢ »+¢" n_

of the resultant flow velocity at any field point. One notes that (20) are the reverse of g, ¢»
in Figure 1.
In particular ¢,=0 on the fixed model and z, ¥ axes; hence there

glal.= —g[m’c cos (6+B)+cos (B—ﬁ?] g/go=m’, cos (#+B)+cos (0—B)---__ 21)

Thus ¢/g,=1-+m’, on the x axis; 1 —m’, on the y axis; and 1 at « wherem’,=0. The dashed
line in Figure 6 gives ¢/aQ.= — (1—m’.)y/a for points on the y axis; it crosses ¥ at the whirl
center where ¢=0, viz, where m’,=1. By (16) m’ =1 for the surface of any model having
afb=1+4+/2; and there is no whirl if afb<{1++/2. Figure 7 shows g/aQ. for the surface of a
model having afb=4, m’,= (g*—b*)/2ab =15/8.

Putting ¢%/¢% of (21) in (1;), where r*/a*=cos’s/cos®8, gives

p/—l?: pa202, = (1—[m’, cos (6+8)+cos (6—B)2) cos® n/cos* B ____(22)

which is graphed in Figure 7 for a model having a/b=4.
Integrating p/_%pqzﬂzc, as in (8), gives for an inviseid liquid Y=0=X; X##0. Figure 7
delineatés X for this case. :

1 The pointd #, o are identical with thosa in Figurs 5; viz, where the slip apeed ¢ In (21} f3 zero; they are celled stop points, stsgnation points, ete.
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For the surface of an endless flat plate (=0, c= o) fixed in the stream —,, clearly
m’.=a/2b and generally r cos (¢-—p) =0; hence (21) gives .

glaQ,= _2—1‘b cos (f+8)=—sinbecosqpeot 2q_ . _______________ (21,)

which equals — =, 0, 1/2 for »=0° 45° 90°. The flow resembles that in Figure 6; it has
twin whirls abreast its middle, stop points at = +a/+2, and infinite velocity at the edges.
Putting in (1,) r=2 and g,= —2%, gives the plate’s surface pressure

p/l}xﬂz "’=$—2-—i='(l—cot2 27) cog? (22,)
g PENe = 2T e, v an R iR 1

F1GURE 6.—Streamlines about endless elliptic oylinder fixed in fufinlte fnviseld liquid rotating about Its long axis with uniform anguiar speed—2;
shows \&—%- Q(ri—m'e a’ b’ cos 2y) with Incremients A ¥m.1, @=—1. Dotted line portrays z-wise speed on y axis
which equals —1/4, 1/2, —  forx=0, £a/+/2, *a; viz, for 1=90°, 45°, 0, etc.
Prorate Spuerorp.—For a prolate spheroid, of semiaxes a, b, ¢, rotating about ¢ with
speed €. in an infinite inviscid liquid,

o= =m Qxy= —%m’cﬂca/b’ 8in 2 008 w_—__ e 23)
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turbed local pressurs in uniform stream, —2
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the geometric symbols being as in Figure 8. For any outer confocal spheroid a’b’¢’ (23) has
the known constant potential coefficient ’ ' T

1+e e’3
_'1 —e 3._1__elz : :
‘=3 —1Te I (24)
(2_82)1 _____6+1 ez - T T —— e

e, ¢’ being the eccentricities of ab a’ b’ Table IV gives surface values of m’, for various shapes
of prolate. sphero1d o o T iy -
In the yz, zx planes ¢=0; in the xy plane, where cos w=1

¢=—-;—m'cﬂca’b’ sin 29 = '-7—~;1,—m',$2¢a’_b’ €O8 29 e (28))

which, except for m’,, have the same values as (15), entailing “the same polar streamlines (18).
The equipotentials on a’b’¢c’ are its intersections with the family ay= — o/m’ Q2. =const.
At any point (z, ¢, 2) on a’b’c’ the orthogonal velocity components are by (23)

-2 dy_ doda
=g dn ~ 9In 35&; B OOt THRREE R (25)

én, os,, 8s., denoting line elements along the normal, meridian, and circle of latitude, as in
Figure 3. Since ¢’, is absent from (1), we shall not need it; we merely note thaton the model’s
surface it is 7Q, sin (6—B) cos w. By geometry dnfds,=r cos (8+8)/a’d’ cos 29,* dw/ds,=.
1/b' sin 4; hence

ga=—m'Q.r cos (6+8) cos w’ T@o=m' Q¢ coS BSID oo ne (25,)

For w=0, ¢’ (=¢q'y) differs only by m’, from (17;) for an elliptic cylmder, also 7 cos B=z .

¢ w=m' 20, sin w=0, m’ xQ, for =0, 7/2.
Superposmg —£. on the above system adds to (251), as easily appears

¢'w=—Qrsin (—p)cose ¢g/,=—Qrcos (0—B)cosw ¢'.=0s cos fsin w___(26)

At-the now fixed surface and on the x, y axes ¢,=0=¢',+¢"’,; hence summing (25,), (26)
gives there
.= —[m’.cos (8+8)+cos (§—B8)] Q. cos w—g,, cos w} o7 '
=(1+m AR cosfsin w=qysime 0 [T

Thus for w=0 clearly ¢/go=m’, cos (6-+8)+cos (#—B), differing from (21) only by m’,; for
w=7/2,¢/ge=—(1+m'), a f_ormula_ like th_a__t__for a negative flow g across a cylinder; for w=0°,

90°, 45°, ¢=T,, E,,,'\/ —é— (@, +@,). On the x'axis g/gg=1+m',; on the y axis g/ge=1—m'.>0

everywhere, hence no whirl centers on y.

Figure 8 shows [g/aQ.] on the meridians w=0, +45°, +90° of a fixed spheroid with a/b=4.
Distributions symmetrical with these occur on the opposite half of the surface. Noteworthy
is ¢ for o= +90°. By (27) itis ¢= + (1+m’.)Q:x; hence the straight-line graph in Figure 8.

Figure 8 shows also, for these meridians, the pressure computed with the working formule,
derived from (1,), (27).

P o Aecos?wt+Bsin®e. . S (28)
%Pa292c

‘E. g, by () & aym 3 d‘: 50 sin 29 cos w; viz, 7 cos (B-+B)=a’t’ cos 2 -;1—. which gives oL L in (). Also dirscily g ,,-% -

—m’, a‘d—%zﬂ- — 1 e§)cr 008 (045) cO3 o

o
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FIGURE 8.—Prolate spheroid fixed in infinite inviscld liqu!d aniformly rotating about it; shows (1) 2-wiss zonal
pressure-force, II% g al O%; (2) surface flow-speed, gfe @; (3} surface pressure, p[—:,— p al O, above o below

undisturbed local pressure in uniform stream, —2, Crosses and circles give measured air pressures for Qw
—38.5 radians per second given in reference 3
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where 4= (1—[m’, cos (8+B8)+cos (8—B)]°) cos’pfcos?8, B=—m’,(2+m’,) cos’y. Here m’/,=
.689 by Table IV. The crosses and circles, giving experimental values taken from Reference 3,
show good agreement with (28) for a considerable part of the surface. For cos w=0, pOCBoca:? ;
or the graph is parabohc

Integrating p, asin (9), (10), gives for an inviscid hqmd Y=0=N, X0 Flgure 8 portrays
X computed from theory and experiment.

Evrvipsoip.—For an ellipsoid, of semiaxes a, b, : along 2, Y, 2, rotating about ¢ with speed
Q. in an infinite inviscid liquid, otherwise still,

which for any outer confocal ellipsoid a’d’¢’, has the eonstant potential coefficient

r— — ' =57 3% Ly
m'e=CB=a) O T ) (B0

the Greek letters being as in Part V. "Surface values of m’, are listed in Table IV.
By (29) the equipotential lines.on a’b’¢’ are its intersections with the hyperbolic cylinder
family xy= — ¢/m’ £.=const. The orthogonals to ¢ cunst. at the surface a’d’c’ are the stream-
lines there. These by (31) are parallel to ¢ where x=0; parallel to ¥ where y=0; normal to
z where 2=0. The same obviously holds for spheroids and other ellipsoidal forms.
In the 2y plane the flow has the polar streamlines (18); also it has there

o= _%—m’cgca’b' sin 2y ¢='—;1)—m’cﬂca’b’ €oS 29 oo -(29))

whenece the streamlines in that plane are plotted. The form of (29,) is like those of (15) and
(23,), for the elliptic cylinder and prolate spheroid, entailing similar expressions for the velocity
and pressure in the plane-flow field 2=0.

For the general flow the velocity components at a’b'¢’ are by (29)

4 .
u = —<z95——+m )Qcy v = _(ybm ‘+m”e)9.;c w = ~9myag e (31)
and those due to the superposed velocity — QR = q,; ate
w'’'=Qy V'=—Qx W =0 e (32).

whence the resultant velocity and pressure may be derived for all points of the flow field about
the ellipsoid fixed in the steady stream —Q.R. In forming the ¥, ¥, 2 derivatives of m’. one
may use the relations (14) and (72).

Everywhere in the planes = 0 y=0, the resultant velocities are. respectwely, by (31)

and (32), )
g=u=(1-m’' )2y g=o=—(1+m )& . (33)

while in the plane z=0, ¢ can be found as indicated for an elliptic cylinder. (33) apply also
to the elliptic cylinder and prolate spheroid previously treated, and to all other forms of the
ellipsoid fixed in the flow —Q,.

(B) BODIES IN COMBINED TRANSLATION AND ROTATION

Most GexERAL_MoTioN.—The most general motion of any body through a fluid may
have the components U, V, W along, and Q,, Q,, @, about, three axes, say @, b, c. The entailed
resultant particle velocity ¢’ at any flow point is found by compounding there the individual
velocities severally due to U, V, W, Q. @, 2., and computable for an ellipsoid by formulas in
Reference 2 and the foregoing text.

_ Yawine FrierT.—In airship study the flow velocity ¢’ caused by a prolate spheroid in
steady circular flight is specially interesting. Let the spheroid’s center describe about 0,
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Figure 9, a circle of radius na, with path speed naQ. Then if « is the constant yaw angle of
attack, the component centroid velocities along a, b, and the steady angular speed sbout ¢ are,
respectively,

U=naQcosa =na sin « Q.= o __ (34)

If, now, velocities the reverse of (34) are imposed on the body and fluid, ¢,=0, and the
surface velocity g on the fixed spheroid has in longitude and latitude the respective components

=1 +k)Usin 6—(1+%k,) ¥V cos 8 cos w—[m cos (84 8)+cos (06— ﬁ)]ch cos m} *
Gu=(1+F%,) Vsin o+ (1+m')Qr cos Bsin w

where positive flows along ds are, respectively, in the directions of increasing 5, w, as in Fig-~

ure3. Thetermsin U, V, are known formulas for translational flow, e. g., Referencge 2; the others
are from (27). Hence q then p is found for any point (8, w) on the spheroid.®* If @, is negli-
gible, ¢=¢ sin ¢, where @=(1+kq)*T*+ (1 +k,)* 17, and e is the angle between the local and
polar normals, as proved in Reference 2. -

Figure 9, portrays, for specified conditions, theoretical values of p/%pQ’, ) beiﬁg the path

speed D%+ T2 of the spheroid’s center; it also portrays '}g/%p(?2 for the model! in rectilinear

motion, with @ =T The difference of ;p/%sz for straight and curved paths, though material,

is less than experiment gives, as shown by 9;. Fuller treatment and data are given in
Reference 3.

The forces X, T’ and moment N, for any zone, may be computed as before; but for the
whole model they are more readily found by the method of Part IV. Zonel Y and V for a
hull form are found in Part III.

The first of (35) applies also to an elliptic cylinder, with cos w=1, m’.=(a?—b%)/2ab.
Fixed in a flow — U, — ¥, —Q,, if has the surface velocity

g=(1+b/e)U sin 6— (1 +afb)V cos ﬂ—[a;—;g—! cos (f+8) +cos (6—',3)]9; ___________ (36)

For an endless flat plate 5=0, cos §=0/a. sin § cot 4; and the last term of (36) may be rewritten

by (21;); thus (38) becomes
g=(U—V cotg—aQ,cosqecot 2q) sin &________________________ (37)

These two values of ¢ with (1,) give the pressure distribution over an elliptic cylinder or flat
plate revolving about an axis parallel to its length or fixed in a fluid rotating about that axis.
Thus an endless plate of width 2a, revolving with angular speed @, path radius ne, and
incidence «, as in Figure 10;, has by (37) the relative surface velocity, viz, slip velocity
g/aQ=(ncosa—nsin acot g—cosncot Zp) sin f___________________(38)
and since sin #8=1, g?= U*+ (7 +x202)?=a’2*(n*+ 2n sin e cos 4+ cos’y), (1) gives

p/%pa’gz=n’+2n sin « cos n+cos ¥ —n? (cos a—sin a cot g ——le cospeot 29y ________ 39

For n=3, a=30° Figure 10, delineates the distribution of slip velocity ¢/a2 on both sides of
the plate; 10; that of the pressure p/% pa*Q@® on its two faces. This pressure integrated over

the plate’s double surface gives ¥'=0,.as may be shown. The dashed line in Figure 10, is the
pressure-difference graph whose integral for =0 to « is also zero. The resultant forces X, ¥
and moment N for such a plate are found in Part IV by & method simpler than surface inte-
gration of the pressure.

¥ Here again ¢ s the slip speed of the flow at any polnt of the body's surface, and depends only on the relative motion of body and fluid.
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Frow Insipe Ernriesoip.—At any point inside an ellipsoid with speeds U, V, W, Qq, Qs
Q., along and about g, b, ¢, filled with inviscid liquid otherwise still,

B—e® - a? -
o=Uc+ Vy+ Wet 5 Qe+ g e+ rp i 0 - oo oo oo (40)
4
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FI1GURE 9.—Prolate spheroid in steady yawing flight. (1) Defines = FiouRE 9 (continued).—~For condlffons (i), (4} delineates pressore load per unft
velocity condifions; (2) delineates theoretical pressure dis- length; (5) the zonal force; (8} the zonal moment. In (4) the full and doited lines
tribution; (8) experimental pressure distribution for Q=40 feet glve thearetical values from equations (a1}, (b1); the dashed line, experimental values
per ‘second. In (2) and (8), full lines indicate rectilinear, from refarence 3. (%) is obtained by planimetring (4); (6) by planimetring (3)
dashed lines curvilinear motion . :

whose coefficients are constant for the whole interior. Hence the components of the particle

velocity ¢ are

0 ¢—a’ - '
¢_u=U+c’-+a’ﬂbz+a’+b29°y""f ------------------- (41)

o
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and like values for », w found by permuting the symbols. If the fluid were solidified any
particle would have

u=U+Qz—Qy, ete, eteo______ (42)

Thus when an ellipsoid full of inviseid still fluid is given any pure translation its content moves peaiiate
as a solid; but when given pure rotation each particle moves with less speed than if the fluid
were solidified, since the fractions in (41) are less than unity.

For velocities U, V, Q. of the ellipsoid

2_ ke e
o="Us+ Vy+fWZb)zngy _______________ S 43) :
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FiGtRrE 10.—Endless fiat plate revolving about axis parallel to its length, in infinfte Inviseld fuwid. (1) Defines condltions; (2f delineates R
relative velocity ¢/a Q of finld; (3) pressure p% p at 91, and pressure difference & p/% p at @ on two faces of plate

for which w=09¢/02=0. For this plane flow (4) with (43) gives

. : \
v=Uy—Vo—3Q, :_l_bz (32 /) —---(44)
whence the streamlines may be plotted. In particular if the model has simple rotation Q.,
—yt=— 2% +2, Y/Qc=const. e oo (45)

and the interior streamlines are hyperbolas, as in Figure 5.
Adding (2) to ¢ In (45) gives the steady flow

y= z I bz (@ + %) (46)
hence the streamlines lie on the elliptic cylinders
e+t =(a*+b")/Q.y=const.._____ e e (47)

104397T—80——28
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By (46) ¢=29.(a*?+ b'x?)i/(a?+b?), which put in (1) gives at (z, y¥), since go= —Q.R,

A(ay +be? |
Prm P Qi PR g P - - oo m e (48)

where p,=pq?/2. Here p, is the centrifugal pressure due to the fluid’s peripheral velocity

¢o, and p is the pressure change due to g,—¢, ¢ being the relamve ~velocity of fAuid and container.

In a like balloon hull ¢ would qmckly damp out, leavmg only p, as the dynamic pressure. At
the ends of @, b, ¢, respectively, (48) gives

Pu=D_ 4b* 40 0.
pn @TTY @B

For large a/b the first is negligible, the second approaches 4, giving p=—3p,= —1.5pQ* as
the temporary dynamic pressure drop 1n81de the hull at the end of 5. Experimental proof
would be interesting. T

PorenrtiaL Corrriciexts.—An ellipsoid of semiaxes a, b, ¢ along z, y, 2, when movmg
through an infinite inviscid liquid, otherwise still, with veloclt,les U, V, W, Q. @, Q. along and
about the instantaneous lines of a, b, ¢, begets the known velocity potential

e=—mUx—m,Vy—m . We—m' Qyz—m’ Qpzx—m/ Ly . ___ (49

the six potential coefficients m being constant over any outer confocal ellipsoid a’b’¢’. Their
values for abe are given in Tables ITI, IV. Alternatively (49) can be written for this surface

2
b +c:k, cz+a‘27c,bﬂbzx tg_zklcgoxy___-___(50)

o=~k Ue—FkVy—k Wez—

the %s being the more familiar inertia coefficients defined and tabulated in Part V. Of the six
potentisl coefficients in (50) the first three are the same as the inertia coefficients k., %, ke;
the last three are greater except when ¢/b or a/c or b/a is zero. Thus, if b/a =0 the last term of
(50) is — &’ R4y, which is the potential on the outer surface of an elliptic cylinder {(a= =) rotating
asbout ¢. Everywhere inside of it the potential is Q.y, as (40) shows.

For the flow (40) textbooks give the inertia coefficients

2 2 —. — a2\2
ka;.kb: kc=1 k’a= 22%2: k,b= z:__'_'%‘g),
which are the squares of the potential coefficients. Qne notes too that the ratios of like terms
in (40), (50) equal the ratios of like potential coefficients and like inertia coefficients, which
latter in turn are known to equal the ratios of like kinetic. energies of the whole outer and inner
fluids, if the inner moves as & solid.

RELATIVE VELOCITY AND KineTIC PRESSURE.—When a body moves steadily through a
perfect fluid, otherwise still, the absolute flow velocity it begets at any point (z, ¥, 2), being
unsteady, is not a measure of the pressure change there. The relative velocity is such a measure.
To find it we superposed on the moving body and its flow field an equal counter velocity, thus
reducing the body to rest-and making the flow about it steady. The same result would follow
from geometrically adding to said absolute flow velocmy the reversed velocity of (x, v, 2) assumed
fixed to the body. In particular this process gives for any point of the body’s surface the wash
velocity, or slip speed, which with Bernoulli’s principle determines the entailed change of surface
pressure. Conversely, if the pressure change at a point is known or measured, it determines
the relative velocity there. In hydrodynamic books the above reversal is used commonly
enough for bodies in_translation. In this text it is_employed as well for rotation; also for
combined translation snd rotation. However general its steady motion, the body is steadily
accompanied by a flaw pattern whose every point, fixed relatively to the body, has constant
relative velocity and constant magnitude of instantaneous absolute velocity and pressure.



REPORT No. 323

FLOW AND FORCE EQUATIONS FOR A BODY REVOLVING IN A FLUID °

PART II
ZONAL FORCES ON HULL FORMS! . N

PressurE Loapixe.—For a prolate spheroid abe with speeds U, V, @, Figure 9., or fixed - e
in a stream — U, — V, —Q,, (35) gives at (x, ¥, z) on. abc the relative velocity L

=q¢21+q’ =A—B cos v+ (cost w
A4, B, O being constant for any latitude circle. In forming this equation one finds -
B=2(1+k,) Usin 8{(1+k,) V cos 8+[m’, cos (6+8)+cos (6—B)Ir2.},
ete., for 4, ¢. In the body’s absence said stream has, at said point (x, ¥, 2),
go*=(— U+yQ)?*+ (— V—2Q.)==A4,— B, cos w+ (} cos® u,
where » alone varies on the latitude circle. Its radius being y,= 2y, makes y=1; cos o,
B, =2Uz%,,
ete., for A;, €;. Putting ¢, ¢ in (1) gives the surface pressure B
pl.5p=q— = (4,—A)+ (B— By} cos w+ (0, — ) cos? w.

2r 2r
By (10,) the loading per unit length of = is, sinceﬁ cos w=0= f cos® o,

Psp=—2 L “p cos wdu=— (B—By)z ﬁ *eos? wdw= —7(B—B)Zoee - - - )

4, 4;, 0, €, vanishing on integration of . Thus, finally, o _ —

Pl5pQ*= —x(B—Bi)zofQ - - - - - oo (ar)

P having the direction of the cross-hull component of p at w=0. o
One notes that g3(ec sin® w) contributes nothing to B or the integral in (a); viz, the loading oL
P is unaffected by q., and depends solely on ¢,, the meridian component of the wash velocity. -
Also for =0 and =, B—B,=0=P. '
In Figure 9, the full line- depicts (a,) for the spheroid shown in 9;, cireling steadily at 40 L .
feet persecond. The theoretical dots closely agreeing with it are from Jones, Reference 3, as is e
also the experimental graph. Beside them is a second theoretical graph plotted from Doctor _ i
Munk’s approximate formula derived in Reference 8 and given in the next paragraph. But ' o
that Professor Jones omitted some minor terms in his value of p, his theoretical P/.50Q* should [
exactly equal (a;). His formula, derived by use of Kelvin's p,/p=¢—¢%/2, can best be studled
in the detailed treatment of Reference 3.
In Reference 8 Professor Ames derives Munk’s &]I'bhlp hull formula : S

P 2 d
sgp=sin 2a £+ 51 6S), —

t This part was added after Partz L, IT, IV, V were typed; hence the special nambering of the sqnations.

427 o
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S being the area of a cross-section; R the radius of the path of the ship’s center. This was
assumed valid for a quite longish solid of revolution; for a short one it was hypothetically
changed to

. ”
B 1 L N—— (b)

Applying this to & prolate spheroid we derive the working formula
Ry S T L A—— (by)

where the constants for a fixed angle of attack are?

2
L=2(k,—k) 5 rsin2e, M- . s,  N=Woose

Plotting (b;) for the conditions in 9, gives the dotted curve in 9, It shows large values
of P/.50Q? for the ends of the spheroid, where (2:) gives zero. To that extent it fails, though
with little consequent error in the zonal force and moment at the hull extremities. It has the
merit of being convement and apphcable to any round hull whose equauon may be unknown
or difficult to use. e

ZonaL ForcE—An end segment of the prolate spher01d say beyond the secnon e=a,
bears the resultant eross pressure -

which with the resisting shear at x; must balance the cross-hull acceleration force on the seg-
ment in yawing flight. For the whole model (bl) with (c) gives ¥'=0, which is not strictly
true for curvilinear motion; but (a;) with (¢) gives ‘the correct theoretmal value of Y, and
agrees with (67). :

In Figure 95 graphs of Y/.50@Q% for the values (a;) and (bl) of P, are shown beside those
derived from Jones’ experimental pressure curve. Since Y is proportlonal to the area of a
segment of the graph of P, it can be found by planimetering the segment or by integrating Pdz.

ZonaL MomeNnT.—The loading P exerts on any end segment, say of length a—, the
moment about its base diameter z

- f "Yan
z

which can be found by planimetering the graph of Y. Figure 9, delineates N, so derived from
the three graphs of Y. They show the moment on the right hand segment varying in length
from 0 to—2a; also on the left segment of length from 0 to 2a.” The resisting moment of the
cross section must balance N, and the acceleration momentof the segment.

CorrecrioN Facrors.—No attempt is here made to deduce theoretically a correction
factor to reconcile the computed and measured p. In Reference 3 Jones shows that the theo-
retical and experimental graphs of P/.5pQ® have, for any given latitude 2,>¢/2, the same
difference of ordinate whatever the incidence 0<a<{20°. Thus the ordinate difference found
for the zero-incidence graphs, when applied to the theoretical graph for any fixed 0<<a<{20°,
determines the experimental one with good accuracy. Such established agreement in loading
favorably affects, in turn, the graphs of ¥, N, the transverse force and moment on any end
segment of the spheroid.

{From the meridlan curve *7 +7b°:=-1: ‘%‘-—ﬁ £, Swryst; hancs —s-zﬂfo %%'--—2: ¥ r, which pat in (b) leads to (bz)
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PART IV
RESULTANT FORCE AND MOMENT

Bopy ixn Free Space—Let 2 homogeneous ellipsoid of semiaxes a, b, ¢ move freely with
component velocities u, v, w, p, ¢, 7! respectively along and about instantaneous fixed space
axes, ¥, 2 coinciding at the instant with @, b, ¢. Then the linear and angular momenta referred
toz, 4, 2 are

myu My myw A;p Big 1 (52)

m; being the body’s mass, 4,, B;, ¢ its moments of inertia about a, b, ¢. If, now, forces X;,
Y., Z, and moments L, M,, N, are applied to the body elong and about z, ¥, 2, they cause in
the vectors (52) the well-known change rates

m@—ro+qw)=X; -A-li’—(-Bl_Ol)gT=L1
mi(0—pw+ru)=Y; By—(Ci—A)rp=M, } .____. ———————— (63)
my(b—qutpo)y=2, Cif— (4,— By)pg= N,

which apply to any homogeneous solid symmetrical about the planes ab, be, ca
For motion in the ab plane; viz, for w, p, g=0; (53) give

Xl ml(u 7‘17) Y1=m1 (2'7+m) Ni= 017.'_ --------------- (54)

and for uniform revolution about an axis parallel to 2, as in Figure 11, viz, for %, #, #=0, (54)

become
X[=—m17‘27 Y1=m17'u N1=0 ______________________ (55)

where now X,, ¥; are merely components of the centripetal force m,ru*+¢*, whose slope is

Y/ Xi=—ufv. Alsoif @=+/u"+*is the path velocity of the body’s centroid, & its path radius,
r=@/h is the angular velocity of & and of vector m,@.

REeacrions or Fruip.—If external forces impel the ellipsoid from rest in a quiescent fric-
tionless infinite liquid, with said velocities u, , w, p, ¢, r, they beget in the fluid the corresponding
linear and angular momentsa

komu kymy kmw .Ap k' »Bg EOre . (56)

where m is the mass of the displaced fluid, and A4, B, { its moments of inertia about a, b, .

One calls &,m, k,m, k.m the ““apparent additionel masses”’; &/, 4, &/ B, &’/ .C the “apparent
additional moments of inertia,” of the body for its axial directions; because the fluid’s resistance
to its linear and angular acceleration gives the appesrance of such added inertia in the body.
The six ¥’s are called “inertia coefficients,” and are shape constants. Values of them are
given in Tables ITI, VI, VIII for various simple quadrics.

The component flow momenta (56), like (52), are vectors along the instantaneous directions
of a, b, ¢; viz, elong z, 7, 2z; hence their time rdtes of change must equal the forces and moments
which the body exerts on the fluid; viz,

X =m i —kyro+kgw) L=k Ap— &' ,B—F .Chgr— (ky—kymow
Y=mEp—kpwtksu) M=k Bi—F  O—F Ayrp— (ks—kdmwu } -___(57)
Z=m(D—k.qu+kpv) N=F' Cr— ' A—F B)pg— ka—Eyymup

1 These new meanings of w, #, w, p, ¢, r kre assigned for convention's sake and for convenience.

429
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all written from (53) on replacing its momenta by those of (56), and adding vector-shift terms.
Thus the vector k,mw shifts with speed » entailing the change rate k mw.v of angular momentum
about «, while k,me shifts with speed w entailing the opposite rate—k,mp.w. Their sum is
(k.—k,)myw. Permuting these gives for the y, z axes (k,—k.)mwu, (k,—ks)muv. When the
%’s are equal the vector-shift terms vanish, as for said free body, or for a sphere, cube, ete., in a
fluid. The fluid reactions are (57) reversed. (57) apply also to fluid inside the trisymmetrical
surface. - - - :

If the angle of attack is @=tan'v/u, we may write in (§3), (57)

r=Q/h u=¢ cos a =@ sin « u-v=,l,Q2 st 2. oo e -(58)

—————————————— mu.r

-_'_mv-r- Xr/a mu
~
—

FioURE 11.—Moments and forces for free body in uniform eolréular motion. Centripetal force, Ri=mQr=
m@Qih, has slope —u/p, r being angular speed abouf 0

Of special aeronautic interest sre (57) for plane motion, such as in yawing airship flight.
for which w, p, ¢=0, giving

X=meaio—lyrs)  Tm=mlesp+hau)  N=k O+ Gp—Emup. .. 59
Thus for uniform circular flight
X=—Fkymro Y=k mru N=@,—Fkamuy_ - ... _______(60)

which are the analogues of (55) for the free body. Or in notation (58)

) )
T PN €5 R R F N R R PU— (1)
7 being the volume of the model.



FLOW AND FORCE EQUATIONS FOR A BODY REVOLVING IN A FLUID 431

As shown in Figure 12 (60) give the resultant force and slope

R =mr/FEE T E P Y/X= —%: ot a=—c0t B oo (62)

also R and NN at the origin are equivalent to a parallel force B through the path center 0, along
a line (called the central axis of the force system) whose arm and intercepts are

I=N/R=F sin (8—a)

z=[secf y=lcosec B _____ (63)

/

FIGURE 12,—Momenta and forces for symmetrical body in uniform clrenlar motion through frictfonless infinlte
liquid otherwise at rest. Whole hydrodynamic force, R=mr vk ul-tkt 5%, has slope —ks uffs 5. Yaw

moment N=(ky—ks) mus=(ki—k&ds) v P—,,Q-, sin 2 «, T being volume

For steady motion (60) show that the body sustains no force in pure translation (r=0);
no force nor moment in pure rotation (u, v=0); no moment in revolution about a point on
x or y; viz, for u=0, or v=0. For given u, v the moment is the same for revolution as for pure
translation. The forces result from combined translation and rotation; the moment from
translation oblique to the axes a, b, irrespective of rotational speed.

CouBiNaTION OF APPLIED ForcEs.—To find the whole applied force constraining a body
to uniform circular motion in & perfect fuid (55), (60) may be added, or graphs like those of
Figures 11, 12, may be superposed. For an airship having m; =m, (55), (60) give

X=—(1+Ek)mer Y =(1+k)mur

1 Writing R=rQ.m k2 costa-Fs sinlz we may call It the centripetal force of the apperent mass m+/Edd cosaFha? Siie for the body direc-
tion of Q. .

*

N=(o—Fk)muo-__ . _____ (64)

[ —— e
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where X=X+ X, etc. Figure 13, compounded of Figures 11, 12, shows that a submerged
plane-force model, revolving uniformly about its path center, may have as sole constraint a
single force R through that center, and outside itself; that is attached to an extension of the
model. Such conditions appear commonly in vector dlagrams ‘of aircraft. The line of R, so
defined, is the central axis of the force system. '

HyproxriNnETICALLY SYMMETRIC ForMs.—Equations (56), (57), for trisymmetrical shapes,
apply also to others having hydrokinetic symmetry. -Ezamples of these are: All surfaces of .
revolution, axially symmetric surfaces whose cross sections are regular polygons; torpedo forms
symmetrically finned, ete. All these figures, as has been known many decades?® have three
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F1GURE 13.—Composition of forces on symmetrical body in uniform clrcular motion through frictionless infinlte liquid
otherwise at rest. Resultant of centripetal and hydredynamic forces, Ra=mr FJOFE) wiS(@FF)T &, hes slope

ke u
“h + Figure 18 i3 11 and 12 compounded

orthogonal axes with ongm at the body’s impulse center,* such that if the body, resting in &
quiet sea of perfect fluid, is impelled along or about either axis it begets in the fluid s lmear
or angular momentum expressible by a vector along that axis.

ExamprEs—We may apply (60) to some s:mp]e cases mterestmg to the aeronautlcal,
engineer.

(1)} For an endless e]hptlc eylmder in um.form ya,wmg flight, as in Flgure 12 m=rpab per
unit length, and by comparison with Table VIII k,=b/a, k,=a/b; hence by (60)

% See Reference 7.
+ 1. a., the polnt of intersection of kam U, kamV, kanW; it may be found as In the last paragraph of Part V.
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= — xaZpry Y =xbtpru N=x{a®—b)pur==(a®— b*)pQ sin2e. .. ____ (65)

The resultant force mpr/a%®+b%u® has the slope —b%/a’s=—Db¥a’.cot a; the central axis is
through the path center; X is the same as for a round cylinder of radius ¢; ¥ the same as for
one of radius b. For a good elliptic aircraft strut e/b=3; hence X/Y=—9p/u=—9 tan a;

2
N =81rb’pu-u=8:-b’.——.sin 2a. By (65) N is the same for all confocal elliptic cy}jnders, since

—b% is so.

If a=b, as for a round strut, ¥=0, R=xa®r@® and coincides with the body’s previously
found centnpetal force to which it bears the ratio mfm;.

If 5=0, as for a flat plate, (65) become

2
= —xa?pry Y=0 N=xa’puv= n-asz sin 2a_ __ _____._. (66)*

The equivalent resultant force =a’prv, with slope ¥/X=—0, runs through the path center
parallel to . If r=0, the plate has pure translation, with forces X, ¥ =0, and moment
N= ra’p'uv, s well known result. X in (66), being the seme as in
(65}, is independent: of the strut thickness .

(2) For a prolate spheroid, of semiaxes a, b, b, in uniform
yawing flight, m=4/3.xpab? and k., k&, are as given in Table III.
Thus for a/b=4, k., k;=0.082, 0.860; hence by (60) |

X =—3.6ab*ry ¥ =0.3434ab%pru N=3.26ablpuv_(67)
(3) For an elliptic disk of semiaxes @, b, ¢, moving as in Fig-
ure 14, Table VILI gives kan=2rpab*/E; hence by (57) the forces

and moment are

Y=—kmpw= —4—0' .rpb’.pw Z=0
Ficure 14—Thin elliptic wing moving par-
L=Ekm. w_3_E‘prz _______ 68) . ie:ectgézdwane of symmetry throagh a

the other pertinent terms in (57) vanishing, as appears on numerical substitution. Here

E=E<a,§), sin®0 = (o~ B)/a*; also L=5webEa- sin 20. Compare (68) with (66), calling b the

width in both.

Treory VErsus ExpERivMENT.—In favorable cases the moment formulas of Part IV
accord fairly well with experiment, as the following instances show. For lack of available data
the force formulas for curvilinear motion are not compared with experiment.

(1) By (85) an endless elliptie strut with ¢=1/38 foot, 6=1/12 foot, ¢=5 feet, held at «
degrees incidence in a uniform stream of standard air at 40 miles an hour, for which p@?%/2=
4.093 pounds per square foot, sustains the yawing moment per foot length

N==(a®—0% ‘%sm 2a=1.3392 sin 2« lb. I ______________ (69)

This compares with the values found in the Navy 8 by 8 foof tunnel, as shown in Teble IX
faired from Figure 15. The agreement is approximate for small angles of attack. The model
was of varnished mahogany, and during test was held with its long axis ¢ level across stream,
and with two closely adjacent sheet metal end plates, 2 feet square, to give the effect of plane
flow.

I Equations (68} wera published !n Referenice 5 as the result of & special research to determine the fiuid forces and moment on & revolving plate
In the present text they follow as corollaries from more general formulas. .
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(2) By (66) an endless thin flat plate of width 2a=5/12 feet, similarly held in the same
air stream, has per unit length the moment

F=ratf&

This is compared in Table X and F1gu.re 16 with the values found in the Navy 8 by 8 foot
tunnel. The flat plate was of polished sheet aluminum 3/32 inch thick, with half round edges -

front and rear.
Again for an endless flat steel plate 5.95 inches wide by 0.178 inch thick at the center, with

its front face flat and back face V-tapered to sharp edges, Fage and Johansen, Reference 6,

KX Theoreﬁcak’/’.

= S Y-
g / 25 _\6 A
N N/ BN Rl Ak x Theoretical
hy 4 \ ’
& ‘e,;l/ el /2 L/
S éq’}, T N 7
JI /4 Lo G
¥ 3 \
stz -gfos ff N
'E i ;‘E L.06 /ﬁ\E)gpsr/}nenfa/ \o\
% ) S . % / -
St f Experimarital Ero4 .
3 3
- T B ] L 1N ¥ T - I. T T T [ ] T -
_Ble _6'~a _4}! _Zlo 2"0 4lu 6‘0 8¢ . [y Ly ;:40 ___ga- 2° 40 5: 80 10° /2- f4° [5-. _/8.
Angle of L .l.ottack, & o L-02 . Angle of -aftock, e .

/ S | . | . // L-06 '

Lt S F-t6

FigURE 15.—Theoretical and experlmental moment FIoURE 16.—Theorectical and experimental moment about long axis of endless
about long axis of endless elliptic oylinder. Width ‘ractangular plate. 'Width 5 inches, sfr 3peed 40 miles per hour. Correction

8 inches, thickness 2 inches, air speed 40 miles per - factor x=0.800
hour. Correction factor «m=0.612

found, at 50 feet per second and 5.85° angle of attack, N=0.125 pound foot as the moment
per foot run about the long axis, computed from the measured pressure over the median section.
By (66), a thin flat plate would have _ —

N=xa*. p—Q-E - sin 2e=0.1931 X 2.9725 X 0.2028 =0.116 lb. ft.

which is 7 per cent less than 0.125 found with their slightly cambered plate.

(8) An elliptic disk 3/32 inch thick with a, =15, 2.5 inches, when held as a wing in the
Navy 40-mile-an-hour str eam, had the moment- L, versu,s angle of attack o shown in F1gure 17
and Table XI._ For this case

sin?g= (a2—b?)/a?=875/000, 6=80°—=94’, ' E=1.03758.

Also in (68) a=5/4 feet, b=5/%feet Q2=4.093; hence

=42, . ﬁ . sin 20=0.8963 sin 2a 1b. $eo oo oo @1

3E
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which gives the theoretical values in Figure 17 and Table XI. The agreement is fair
at small incidences. The disk as tested was of sheet aluminum cut square at the
edges without any rounding or sherpening. -

(4) For a wooden prolatespheroid -.20 :

24 inches long by 6 inches thick, i 7 )
carried as in Figure 12 round a circle 18 @ [Tk x Theorefical
of radius £ =27.96 feet to the model’s . _ L5 &1\
center, Jones, Reference 3, found at 4 g / \
40 feet per second the values of N £ j Y
listed in Table XII. For this case gf./2 / \\
Table IIT gives Tca k,=0.778, and Sl 0 ~imental ) o
T T e ke fro fromeom
N= (k,—k,,)f-”f,z -5in 2a=0.388 5in 2a. §

= .0
These values appear from Table XII i
not te accord closely with the experi-
mental ones. 02
CorrEcTION FACTORS. —Flgurea

15, 16, 17 poriray experimental ._ge _go —g= —2- 20 40 6 8° 10° /20 140 & 18 20°
moments, at small angles, as accu- =02 ‘Angle of atfack, o
rately equal to the theoretical times - 04
an empirical correction factor =
Thus amended (61) gives for the 7 --06
experimental moment / P

N,=xN=x(r—E)r - 2L - sin 2a. 7// o
For the given elliptmal _cylinder ! -—/2
x=0.912 with —8°<a<6% for /
the endless plate x=0.860 with /i Pt

—6°<a<6° for the elliptic disk S L6
x=0.887 with —5°<a<4®. Insach « / :
cases one should expect to find the ' /8
actual air pressure nearly equal to -—20

the theoretical over the model’s Ficerr 17.—Theoretical and experimental moment sbout long axis of elliptic disk.

forward part, but so deficient along ‘L:igst;w inches, width 5 Inches, air speed 40 mfles per hour. Correction factor

the rear upper surface as to cause a

defect of resultant moment. No effort is made here to estimnate it theoreticelly, nor to de-

termine it empirically for a wide range of conditions.
The measurements shown in Table X, for the flat plate, were repeated at 50 and 60 nulea
an hour without perceptible scale effect.
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PART V

POTENTIAL COEFFICIENTS, INERTIA COEFFICIENTS

Green’s InTeeRaLs.—The foregoing text employs Green’s well-known integrals, which
for the ellipsoid abc may be symbolized thus:

= dx = dx
y a’%h’e’ . ﬁ.=a,bc£ a’b’8¢’

where @’ =+/a®+ A, b’ =+/BF+ 1, etc., are semiaxes of the confocal ellipsoid a’d’c’.
have the following values, Reference 4:

a=A® —c)F @, o) —E(6, o)]

= dxr
a=abc ¥= ach; &)Pé',g _______ (72)

The integrals

,3=A(c’—a’)[62_ Fo, o)+ S B )]
T T A= gl R | S (73)!
y=A@ -0 VF=F 5, ~E0, 8 |
where
2abc 2 p? . a?—¢c?
A=-(a2_172)(b2-_cz)1/a,_c, sin’f= 2 sin’e a:z_ﬂ----—-—-—-—;a‘-")

and the elliptic integrals are _

F(, o)= S (1—sin% sin’p) Hde  E(6, ¢)=JS (1 —sind sin’p)*#deo- - -oeenn (75)

Numerical values of F(6, qo), E@, o), @, 8, y are given in Tables I, II for A=0 and various
ratios a/b, b/c; viz, for various shapes of the ellipsoid abe. For o==/2 one writes F(6, ¢)= K,
E(8, ¢)=E, by convention.

PorenTisl. CoErFrFrciENTs.—For motion (49) the ellipsoid abc has the potential coefficients
known from textbooks.

= Gly— 43) _i')’—-c2
Mg 2_ao_- -ma 2G— (70 ﬁ) where G—m
—a?

PR o S S -
i . ’ IB a) —b?
Me=g—r m’ = ﬁéTﬁ;—TWhere =% ’+b’

Ma, My, M, being for_translation along a, b, ¢ and m’,, m’,, m’, for rotation about them, and

an, B Yo bemg (73) for A=0; viz, fora’, b’, ¢'=a; b, c.

Surface values of (76), viz, for a, 8, 7=

g, Bo, Yo &Te glven n Tables 111, IV. For ﬂmd msxde the eﬂxpsmd the pobentxal coefﬁclents are
as in (40) and given numencally in Table V. ; '
InerTiA CoEFPICIENTS.—From (76) are derived the conventional linear and angular inertia

coefficients
k a) k b kc =

for the ellipsoid moving through or containing 11qu1d as m (40), (49)

given in Tables ITI, VI, VIIL.

Mgy My, Mo

oy ko, B c=Gm/ gy Hn' 5, I’ ¢ e 77

Surface values are

3 (73) satisfy the known relation a+8-vy=2abe/a’b’e’, a5 appears on adding.

438
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Livrrine ConpiTions.—In some limiting cases, as for ¢=0, or ¢ =38, etc., (73) may become
indeterminate and require evaluation, as in Reference 4. In such cases the formulas in Table
VIII meay be used. For ¢=0, entailing zero mess and infinite k., &’,, k', onle may use in (57)
the values of k.m, ¥’ .4, &’ B given at the bottom of Table VIIL.

Praysicar Muaning oF THE Corrricients.—The tabulated potential coefficients, put in
(40) or (49), serve to find the numerical value of the potential ¢, or impulse — py per unit area,
at any point (z, ¢, 2) of an ellipsoid surface.®. Integration of pp over any surface, as explained
for p in Part I, gives the component linear and angular zonal impulses. So, too, integration of
— peq«f2, where ¢, is the normal surface velocity at (x, ¥, 2), gives the kinetic energy imparted
to the fluid; and integration of the impulsive pressure — pdyp/df gives the impulsive zonal
forces and moments. One finds pdp/0t for (40), (49) by using with them the specified density
p, accelerations U, ¥, W, Q,, @, Q., and tabulated potential coefficients for the given semiaxes
a, b, ec.

Thus putting —pe,, —pe’. for p in (9), (10,), and integrating over the whole ellipsoid
surface, easily gives the fluid’s linear and angular momenta

E.mW BeCQe oo (78)

where m W, (Q, are respectively the linear and angular momenta of the displaced fluid moving
as a solid with velocities TV, 2.. The like surface infegration of — pe.q./2 gives, as is well known,

kem W22 .22 . (79)

where m W?/2, 0Q./2 are the kinetic energies of the displaced fluid so moving. Esch inertia
coefficient therefore is a ratio of the body’s apparent inertia, due to the field fluid, to the like
inertia of the displaced fluid moving as a solid.

By (49) the potential coefficients due fo velocities W, Q. are

m.=—opf Wz fe=—o JQuy

The first is the ratio of the outer and inner surface potentials due to W at any point z on the
ellipsoid abe; the second is the ratio of the potentials due to @, at (z, 7), respectively on the
outer surface of that ellipsoid and inside the e¢ylinder of semiaxes «, 5, .

One notes that the momenta (78) times half the velocities give (79); slso that the time
derivatives of (78) are the force and moment Z, N=~kmF, k'.00., as in (57) for the simple
z-wise motions, W, Q. _

For any axial surface, say of torpedo form, moving as in Figure 12, the ratio —&’,0Q./k;m T
is the distance from the arbitrary origin 0; to the impulse center O, or center of virtual mass.
This may be taken as origin, and if the body’s center of mass also is there Figures 11, 12 can
still be superposed as in Figure 13. In the same way are related the acceleration force and
moment k,mV, k' .0Q,, thus illustrating the doctrine that the motion of a hydrokinetically sym-
metric form in a boundless perfect fluid, without circulation, obeys the ordinary dynamic
equations for a rigid body.

AERODYNAMICAL LLABORATORTY," ;
Buresv oF ConsrructioN ANDp REPAIR, U. S. Navy,
WasamaTon, D. C., December 17, 1928.

1 This impulse {s imparted by the moving surface to the fAunid, otherwise stifl; the finld in turn tends to impart to the body the tmpulss sy
per unit ares at (z, 7, 7).
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CHIEF SYMBOLS USED IN THE TEXT

GEOMETRICAL
a By € e ‘Semiaxes of ellipsoid abe.
a, b, ¢ ... Semiaxes of confocal ellipsoid a’b’c’. _
€ € o Eccentricities of ellipse ab and its confocal a’ b ae=a'e’ =o' —b
n; Ry, hee oo - ... Normial to ellipse ab; distances from origin {0 normal and tangent.
Lamy B Direotion cosines of norma,l n to any surface.
8 8y Bumom m e - Length slong any line; lengths along meridian and circle of latitude.
R T S, Cartesian coordinates; also coordinate axes.
#,8, e e wwve———- Polar coordinates of prolate spheroid abc.
N J Eccentrie angle of ab, inclination to z of normal to ab.
EINEMATICAL
Uy Uy W o mme e Component velocities of fluid parallel to z, y, z axes.
Gty Qnommmmemmm e Component velocities of fluid parallel to tangent and normal.
Qor Qemmmmmmeememee Regultant velocity of fluid before and after disturbance.
Uy Uy Wem o mcmmee | Component translation velocities of abc parallel to e, b, ¢
UV, Weeeee 2 Component translation velocities of abc parallel to a, b, ¢ . .
2 N O Component rotation velocities of abe about a, b, ..o __ Alternative symbols.
Doy Uy Voo meme e  Camponent rotation velocities of abe about a, b, c______
R S Velocity potential, stream function. -
Miny ™y g P --- Potential coeffieients for ebe with velocitiegu, o, wor U, ¥, W.
gy My M. Potential coeficients for gbe \nth VelQ(.'ltleﬁ P gTor ﬂ,, n,,, Qe
Q=TT 73+ W2__ Resultant velocity of abe. . '
DYNAMICAL
Ay By, Creee_ Moments of inertis of rigid body about its axes a, b, ¢c.
A, B Co - Moments of inertia of displaced fluid moving as & solid.
My Moo ___.-____..Ma.ss of body, mass of displaced fluid.
Py Tome e mmmmrmreem Density of fluid, volume of maqdel or displaced fluid.
Dy Pameoommmmmeeem Pressure of fluid moving, pressure on coming to rest.
X, Yy, Zi; Ri--.-. Camponent forces applied to free rigid body; resultant force.
X,Y,Z; R._...... Component forces exerted by body on fluid; resultant force.
Ly My, Niaooo___: : Component moments about a, b, ¢ applied {o rigid body.
L M, N_ .. Comporent moments about a, b, ¢ exerted by body on fluid. .
Koy Boy Boee e Inertia coefficients for abe moying parallel to a, b, ¢ in fluid.
Ko Koy B ee e _Inertia coefficients for abe rotating sbout g, b, ¢ in fluid.
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TABLE I . . R .' _' -

ELLIPTIC INTEGRALS F(g, o), E(8, o)1
[Defined In eq. (75), Part V1]

. ble
. L .
gje = LA e T
: 1 2 3 4 5 6 7 { I 9 19 =
F@, ¢}
1 0. 00000 i
2 131606 L4720 .
3 1. 78305 1. 43870 1 23095
4 08412 171374 145309 131814
5 2.23310 L 163471 1 50887 1.36940
8 2.47003 2.10413 1.85188 166560 152053 1. 40332
7 2. 63508 225400 1. 09520 1 80281 165204 1. 52050 L4245
8 277024 238432 2.12075 192370 1. 76856 Ledigd 153565 | L4455
9 2.80035 2.45071 2 23255 203101 1.87318 174821 163405 1. 51085 1 4548
10 2. 99638 2. 60258 2.33308 2. 12855 196504 183534 L 72357 1. 62768 154419 1 £7063
[--] « « [--1 L] -] [--] -3 L] -] -
E@, »)
1 €. 00000 .
a . 86603 L4720
3 04277 Lo 1. 23095
4 . 06822 1 06091 118103 131814
5 9775 1. 05010 1. 14337 125128 136940
N .0R567 L 04146 111604 | L2024 120996 1.40832
7 98972 L 109559 1. 24893 1.33574 L 42745
| g 00214 102946 108071 114185 121035 1. 29451 L3637 | L4550 .
.9 .90378 102529 | 108564 112136 1. 18040 124464 121304 138453 L45M8
10 . 50406 L0285 | L0566 110516 1 15660 L 21267 L 27310 1.33642 140240 L 47063
i 1. 00000 1. 00000 I 1. 00000 1. 00000 100000 |  1.00000 1. 0000¢ 1 00000 1. 00000 L )
1 The integrals in this table ars culled from L. Potin’s Formules et Tables Numerique.
TABLE II
GREEN’S INTEGRALS ag, fo, 70
[Defined in eq. (73}, Part VI
ble
- r
aje 1 2 3 4 5 - 6 7 g8 .| 9 10 -
L -
| : :
3 O Sy | o4 | -
2 - -
3 . 21751 . 31265 | 038480
4 . - 2474 26820 | 0.20636 i
5 JAun | L1706 ~20719 23199 0.24951 H i
6 088527 1 13471 . 16584 . 18769 2038 0. 21841 } -
7 .069266  .10950 13629 15541 16970 . 18070 0.18950 |
8 L066894 | .091037 | 11435 13125 14496 15440 16252 | 010914
¢ L047710 | Q7071 . 097571 11278 12448 .13378 14133 . 14767 0. 15271
16 . 040637 . 066203 054381 | .OGU957 . 10872 11728 . 12428 . 18010 . 13500 0.13920
® 0 l [ 0 0 0 0 0 d 0 lc
Ba
:11 o'sms ! 0. 47280 |
1 L0127 | .534%3 | 0.36460 P
4 e85 | 56764 . 30662 0. 20636
5 lpdis | Ims2 41804 . B1587 0. 24851
6 95678 . 60693 43307 . 32965 . 26265 0. 21541
7 . 98538 61775 JAHI13 . 2275 24T 0. 15850
8 JoTIS  _e2NTT . 45260 J34012 38071 25284 -1965¢ 0.16014 ,
9 .g7619 . 63184 45313 . 35509 J25708 |, 23847 2087 . 17458 0.15211 !
10 97072 . 83659 46437 .36109 L2023 . 24364 X725 . 17eeT 5712 ' 19
- 100000 i . 66667 . . .amsi .28572 « 25000 L2222 .:amoo,l . 18182
* ™
% o'm % 105440
3 g1z . U112 | L2078
4 L0259 | L 20572 133518 140726
5 L4418 123752 137473 145223 1. 50008
6 95878 1. 25836 140110 1. 48267 1 88401 1. 56918
7 96538 L2723 141956 1. 50377 1. 55764 1. 82100 .
8 L7154 143306 1.51953 157504 161325 1.61091 1. 86172
9 610 [ 120109 144320 1 53154 158844 162776 1. 65630 1L 67784 169457
10 97972 1. 20720 L 45125 1 54094 1. 53505 163017 1. 66816 1 69062 170787 L 72160
@ 100000 , 133333 1. 50000 1, 60000 1. 66667 171429 1. 73000 177778 1. 80000 L 81818 |2, 00C00
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TABLE III ... o
POTENTIAL COEFFICIENTS m,, ms, m.* FOR ELLIPSOIDS IN TRANSLATION

(For outer surface o'f abc)
[Defined in eq. (76)]

* These have the same values as the inertia coeficlents k., ks, k..

aje 1 2 1‘ T8 4 5 7 8 9 10
b A
e
1 0.5000 _ , ;
H " o Y 0.2229 = 7
. . . o ’
4 .0aiel 118 .1540 0.1740 : :
5 oo | s | L1313 0. 1425
8 . 04522 ! T 0N042 11038 . 1133 0.1307
7 . 05% 07318 .00272 06038 | 0.1047
8 A - 06084 07020 | .O7TTA - 08388 08846 | o.00%8
9 - 02444 . 04008 .05120 -05978 - 06687 - 07160 . 07608 ; 0. 08267
10 - 02074 7] - 04403 - 05150 05748 - 06220 - 06626 R .07238 | 0.07481
@ 0 0 0 - 0 0 0 ¢
— : = =i
m
1 0. 5000 _ . : =
3 L7042 0.3096 . i . .
3 ~8039 . 3645 o i
4 -8508 3083 L2474 0.1740 e
5 8048 203 . L1878 0.1425
6 o171 .4857 . 2764 187 L1513 0. 1907
7 L0331 <4489 I L1579 1266 0. 3047
8 L0447 L4554 -2035 L2118 .1633 1814 1000 | 0.00238
9 - 9538 B8 . 2080 .1676 T 1128 . 0. 08367
10 . - 4689 . 3024 1n2 . AT - 00846 .08528 | 0.07481
@ 1.0000 ' . 8333 - 2500 - 2000 . 1667 J1a2¢ . 12500 .11t . 10000
s
1 0. 5000 T o
2 7042 Lus | o coE
3 - 8030 182 . 1743 ) =t
¢ 8698 [ LEI8 | 2008 2.874 -
5 . LTezs | 2109 2.651 3.008
] o 1607 i 2339 2806 | -8.20 8.642 :
7 .91 1750 2,466 ; 3.030 3.520 3,631 4277 '
8 w047 | Ly 2 598 “3.163 37086 | 41i 4,570 4.012
9 To538 Lsal | A 3.260. | &80 4313 4819 5208 5 548 )
10 - 9603 L8d8 | . 2645 | 3.347 3087 i 5. 082 5. 485 5.846 6.184
Moo 1.0000 2.000 I . 8,000 4000 5.000 6,000 7.000 8. 000 9.000 10. 000
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TABLE IV
POTENTIAL COEFFICIENTS m',, m';, m', FOR ELLIPSOIDS IN ROTATION
. (For outer surface of ¢ b ¢)
[Defined In eq. (76)]

441

bfc

i
efc ' 1 2 3 4 5 6 7 8 9 10 -
|
i .
| i
T
1 I 0
2 i 0 0.5643
3 0 L6390 1045
4 0 6763 1135 Lﬁ !
5 0 6959 1100 1 To1043
§ | 0 . 1225 1663 , 2.042 2.380
7 0 .7l 1249 L705 | 2113 9,481 2.813
8 booa L7270 1.266 L7388 . 2165 2, 556 2,915 3. 245
e 0 7315 1.278 L762 | 225 2615 2.095 3.348 675
10 0 .48 1288 1780 | 23:8 2.660 2058 3.430 .778 £.108
@ (I .ma[ 1.333 L85 | 2400 207 3.429 3.937 4448 | 4.950 L
. m's
1 0 : :
2 —0.3090 | —0.5643 -
3 —5819 | —g=83 | —Lo45 '
4 —.6888 ; —LI1M¢ [ —130 —L499 .
5 —.7381 . —L284 | —L&88 —1.800 | —L®M3
6 ~.8058 | —L3%4 [ —L780 —2.052 —~2.243 —2.380
7 —.8412 | —L4&6 | —Lg35 —2.264 —2.504 —2.680 —32.813
g —.8850 | —L&S | —2.082 ~4 445 —2.732 —2.948 —3.114 —3. M5
9 —.8357 | —le07 [ —2168 —2.600 —2.031 —3.188 —3.888 —3.547 —3.675
10 — 013 ; —L65¢ | —2257 —274 —3.107 —3.402 —3.637 —3.825 —3.0:8 —4. 103
@ —1.0000 | —2000 | —3.000 —4£.000 f—a.ooo —8.000 —T.000 —8.000 —0.000 |—10.000 —
m'e
1 e
2 0. 3990 0 B _
3 5819 0.1556 0
r .6588 . 2420 0.08332 0
5 7881 . 2969 L1850 0.05193 0
6 . 8058 3350 1719 . 0. 03549 ¢
7 802 .3627 Q881 LI . 06127 . 02569 0
8 . 8669 . 3836 L2181 | L1300 . 03081 . 04520 0. 01951 o X
9 8857 . 3998 2336 | .I48¢ . 00610 . 0605 . 03480 0.01527 0 !
10 . 9013 L4127 L2480 ., .1608 L1084 07201 04721 . 02770 0LoIzs 0 :
= £ 0000 . 5000 L3833 i . 2500 L3000 . 18687 . 14238 . 12500 SILLL § 0.10000 ¢

104397—30——29
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TABLE V

POTENTIAL COEFFICIENTS m’,, m'y, m . FOR ELLIPSOIDS IN ROTATION

(For all pointa inside of ¢ & ¢)
[Deflned in eq. (40))

be .
aje 1 2° 8 4 5 6" 7 8 9 10 @
m,‘-Gf_._
otow | 0 0.60000 | 0.80000 | 0.88285° '_6.9230_8': 0. 9455 aoeooo_{ 0.06923 | 0.97561 | 0.9%020 |L0CO0O
meE_
1 0 -
2 —0.60000 :
3 —. 80000
4 —. 83235
5 —. 92308
[} —, 04505 i}Same for all values of bjc
7 —. 96000
8 —. 90923
9 —. 97561
10 —. 98020
P —1.00000 ..
me=I_
1 0 3 - f-_; B \ v
2 0.60000 | © =1
3 80000 | o382 | o
i - 88235 6RO | 0.28000 | O B
5 +92308 S TAI4 4089 | o.2te81 ! o .
8 ~94505 < 80000 - 60000 38462 | o808 | o0
7 - 96000 - 84906 68068 <5078 .32482 | 0.1524 | 0 .
8 - 96023 -88285 75842 - Sono 43820 ' %000 | o824 | o
2 - 97561 - 90588 -80000 - 67010 . 52830 . Bab1s | o | 0
1 $98020 163308 - 83486 L2414 £ 60000 . | 3oa8 | .mi0sL | 01087 | 0O
@ 100000 | 100000 | 1L00OOO | L 100000 | 100000 | 100000 L0000 | 100000 |.eomoeee
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TABLE VI
INERTIA COEFFICIENTS! ¥, ¥, k' FOR ELLIPSQIDS IN ROTATION
{For outer surface of @ b ¢)

[Defined in eq. (77)]

" Ye .
afc 1 2 3 4 5 [ 7 8 -8 10
- Ka=Qm'e
1 0
2 0 0.3386
3 ] . 3834 (. 8359
4 ()] . 4081 . 9081 L1323
5 i} 4194 . 9519 1.408 1.793 .
-] 0 4275 . 8803 1468 1. 885 2251
7 Q . 4328 . 9095 L 505 L 950 2347 2. 701
8 [ . 4362 L013 L5383 1909 2.418 2708 3.145
9 0 . 4389 L023 L 565 2,035 2.473 2.875 3. M5 3. 585
10 4] 4409 1030 L 571 2064 2,518 2.985 334 3.086 4,023
@ 0 « 4500 L0687 165 2215 2758 a2 3.818 4.336 4,852
Ey=Hmn's
1 o |
2 0.2304 . 0.3338
3 . 4655 7082 0.8350
4 .680:8 <945 L1901 L.323
] . 6508 1. 167 1468 1. 662 1.783
8 .T622 L300 L6883 1. 641 2123 2 251
7 . 8066 1. 417 1. 857 2174 2 403 2.573 2701
8 . 8393 L 501 19899 2.370 2,648 2.857 019 3.145
9 - 3641 1 567 2115 2 536 2 860 3.110 3.303 3. 460 3. 585
10 . 8834 1.622 2213 2,679 3. 45 8.335 3.565 8. 740 3. 000 4.022
« 10000 2.000 3.000 4. 000 5.000 6.000 7.000 8.000 9, 000 10. 000
KFo=Im',
1 a
2 0. 2394 0
3 4655 0. 05985 0
4 .60°8 . 0. 02333 i}
b . 6988 - 06393 0. 01140 a
6 . 7622 « 2080 . 1031 -03348 0. (0640 1]
7 . 8068 .3009 .1367 . 05758 . 01987 0. 00393 0 .
) .8303 . 3385 1643 o 07 . 03541 .01288 0. 00259 0
9 « 5641 .3622 . 1569 . 09941 . 05077 . 02330 . 00858 0. 00179
10 . 3834 .3810 « 2054 . 1164 . 06503 . 1 .01016 . 00608 0. 00130 0
@ 1.0000 . 5000 .3833 » 2500 . 20000 . 16667 . 14286 . 12500 11118 0.10000

t For translation kg, k3, k. are given in Table ITI.
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(Innper surface of a b c)

TABLE VII™
INERTIA COEFFICIENTS %, ¥'s, ¥, FOR ELLIPSOIDS IN ROTATION.

[Defined in eq. (77)]

e
13
ajc 1 2’ 3 4 [ 6 7 8 9 10 [
kf.éami.;:
" Oto 1] 0. 36000 0. 64000 0. 77854 0. 85208 0. 89482 0. 92160 0. 93041 0. 95181 0. 66078 'tooooo
k‘b-Hm’:: ' ’
1 0
2 0. 36000
] + 64000 .
4 T7854
[ 85208 -
8 Same for all values of b/c.
7 92160 t
8 . 03041
9 . 95181
10 . 96079 -
® 1. 00000
Fo=Imt, .
1 0 _ U
2 0. 36000 1] . . T
3 64000 0. 14703 . -
4 . 17854 . 38000 0. 07840 0 L
& . 85208 . 52438 « 32145 0, 04818 0 -
6 . 80482 . 84000 . 36000 .1 0. 03252 0 -
7 . 92160 ~ 72090 . 47663 . 25776 . 10528 0. g@g )]
8 - 93041 T804 . 50764 . 36000 . 19202 . " 0. 01762 0 :
9 . 95181 . 82062 . 84000 . 44008 . 27910 W14 . 06059 0. 01375 [:
10 . 96079 . 85208 . 60699 . 52438 . 36000 . 22145 . 14716 . 04818 0.01102 1]
o 1. 060000 1. 00000 1. 00000 L 00000 1. 00000 1. 00000 100000 | 100000 1. 00000 L.00000 |-eemenr. -
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TABLE VIII
INERTIA VALUES FOR LIMITING FORMS OF ELLIPSOIDS a>b>c

INERTIA COEFFICIENTS FOR TRANSLATION AND ROTATION
o : Shape ke b L ¥, B S .
c=0
1 1] Q ‘@ - ™ 1]
1+ 0 0 - - « a
- 0 1] @ L. [}
>e>0
- : _¢c_ ce—esinie __aae—csginle ef(r—5qt 0
1 [ Oblate spherold et=1—c¥2! @ae(e 1) —¢ ainte ¢ ee—asinte @2~ F—eN (re—Pal .
1+ | Ellipsoid. YT
@ | Eliptical eylinder ...oeomenme_] 0 o bfe z bje b s
! - .
cmed
- l - E
1 Sphere M “ [ 1 10
M‘]if_ge log Ite 2 . *
14 Jate spherold o l—ctla? T—¢ iy o 2 0 ei(Ba—cco)t
Prolate spherold e#=1—c¥/at.___ The % s 12 = —--0 -
R T it
@ Round eylinder_.... 0 1 L. 0 i i
APPARENT MASSES AND MOMENTS OF INERTIA WHEXN c¢=0 e
o i Shape Eem P okm ko bt ¥ F.C -
] ' - R
1 Cirealar disk....... ..._.__._' 0 .‘ o . Y : 1 0 .
1+ n ! 4 4xp _abl(ai—b)  dwp _ a¥Xel~ -
Elliptical disk—....... - 0 ;0 . NE W G mE-FR 5 @—BERS 0 L
« | Lorgrectangleame. .. 0 Lo i et | 0 _ Co
3 3 3 31—t 14e >
111—5.-—1+;,—;-\/Q sin-te, Ba—o=—3+5—3 5 b,

* Per unit length of model.
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TABLE IX

LIFT, DRAG, AND MOMENT ON ENDLESS ELLIPTIC CYLINDER
[Width 8 inches, thickness 2 inches, air speed 40 miles per hour}

Momant about long
Lt Drag axis pound foot per
i 1o foot run
l t:c!k at-. —
il . ;.| Theoreti-
l 4egrees | poynd perfoot | B cal
ran mental | N=1.3392
sin 2a
—8 | —2.80 | 0.160 | —0.3357] —o.3691
—6 —1LH 139 ~254 ] —.2r84
—4 —142 122 ~. 170 —. 1864
-3 —L11 118 ~. 127 —. 1400
2 -~.76 11 ~, 084 —. 0934
=1 —. 40 108 ~. 047 —. 0487
] | B S| S
2 ) Ppist "L (085 L0034
3 L13 116 AR . 1400
i L | .Im L .1864
[} L90 . 140 4B 2734
+8 +2. 18 165 +. 32;5 -+.8691 |

) ‘Aﬂ: the test anglas @ were in pert fractional, all megsurements in Tnble IX are fairad from the orlglm.l gmphs of litt, drag, and moment versus
a,in

TABLE X
LIFT, DRAG, AND MOMENT ON ENDLESS THIN FLAT PLATE
[Width 5 inches, air speed 40 mfes per hour}

' Momax'it aboul long
Lift Drag p?w% foot
per oof run
Angle ' . ey
tol ft. 4'J
8CK dy | - ’ Theoretl-
degrees : Experl- cal
Pound per foot run mantal ! Nw0.5881
i sin 2a
TAEF -
—8 | —1345 | 0.190 -0.107 | —0.1538
—8 —. 980 ii2 — 07 —. 1180
-5 —.827 0816 —.% —. 0084
—4 —. 614 0596 -0 — 0777
—8 | —.471 —. 00 —. 06838
-2 —. 815 0360 —, 082 —. (389
~1 —. 157 0324 —.016 —.0185
+1 4(-’155 R -19 oty -B 01905
2| en | .30 (0331 losme
3 «ATL L0472 0507, .08
4 () . 0848 066 L0777
5 831 . 0900 N 0984
6 1.018 J124 . 088 . 1160
8 L346 . 208 107 L1538
10 1.538 201 .084 +. 1900
12 1594 . 360 % |
14 1.582 | . .422 W
16 1. 881 480 . 055
+18 | +L8%0 | .52 | +.048 I
= .

[y
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TABLE XI

LIFT, DRAG, AND MOMENT ON THIN ELLIPTIC WING
{Length 30 Inches, width 5 inches, afr speed 40 miles per hour]

Moment about long L m—
Lite Dreg axis, pound foot o ST
of at-
5&%‘%& Exper: Theeglmﬁ-
Poands mental | L=0.8963
sin 2«
-8 —2.415 0.426 -0.173 —0. 2471
-8 —1.838 263 —. 154 —. 1868
—4 —1.1588 . 169 —. 109 -, 1247
-3 —. 888 .138 -, 082 —. 0937
-2 -, 587 116 -, 053 —. 0625
-1 —. 204 105 - —. 0813
0 4.005 108 a
+1 .306 106 +.030 . 0818 -
2 . 590 118 . 056 0025
3 .890 136 084 . 0837
i £195 | |18 R 1047 .
8 1,861 <365 - . 1863
8 2 474 422 .185 <471
10 2.885 . 567 -+. 3066
12 2,958 . 096 109 -
14 2,892 708 094
18 2.859 87 . 086
18 2.7689 974 097
+20 +2.725 1085 +. 005
TABLE XII

MOMENT ON PROLATE SPHEROQID!
[Length 24 inches, diameter 6 inches, through-alr speed 40 feet per sacond]

Moment about minor sxis, pound foot

4

. Measursd
- Angle Found by -
on bal- [ )

- of at-
“tack | BUC2 Th:ﬁeﬂ-
. degrees N=0.388
' i Rectl- Reoti- Curvi- sin 2o
i linear Iinear Hnear
! motion | metfon | motion
‘[ —20 | —0.179 | —o.207 | 0157 | —~0.249
| ~-10 -.108 —.122 —. 078 —.183
— | -5 [ = —.018 | —o05
H (1] 0 0 +.021 0 i
410 +. 1068 +. 122 <127 :t. 138
+20 +. 179 +. 207 +.177 . -

1 Data taken from Referencs 3.



